
Neural mechanisms for hallucinations

Pairing a stimulus in one modality (vision) with a stimulus in another (sound) can lead to task-in-
duced hallucinations in healthy individuals. After many trials, people eventually report perceiving
a nonexistent stimulus contingent on the presence of the previously paired stimulus. Powers et al.
investigated how different groups of volunteers and patients respond to this conditioning par-
adigm. They used behavior, neuroimaging, and computational modeling to dissect the effect of
perceptual priors versus sensory evidence on such induced hallucinations. People who are more
prone to hear voices were more susceptible to the induced auditory hallucinations. The network of
brain regions that was active during the conditioned hallucinations resembled the network ob-
served during clinical symptom capture in individuals who hallucinate while in a brain scanner.
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Abstract

Some people hear voices that others do not, but only some of those people seek treatment. Using a
Pavlovian learning task, we induced conditioned hallucinations in four groups of people who dif-
fered orthogonally in their voice-hearing and treatment-seeking statuses. People who hear voices
were significantly more susceptible to the effect. Using functional neuroimaging and computation-
al modeling of perception, we identified processes that differentiated voice-hearers from non–
voice-hearers and treatment-seekers from non–treatment-seekers and characterized a brain cir-
cuit that mediated the conditioned hallucinations. These data demonstrate the profound and
sometimes pathological impact of top-down cognitive processes on perception and may represent
an objective means to discern people with a need for treatment from those without.
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Perception is not simply the passive reception of inputs (1). We actively infer the causes of our sensa-
tions (2). These inferences are influenced by our prior experiences (3). Priors and inputs might be com-
bined according to Bayes’ rule (4). Prediction errors, the mismatch between priors and inputs, con-
tribute to belief updating (5). Hallucinations (percepts without external stimulus) may arise when
strong priors cause a percept in the absence of input (6). We tested this theory by engendering new pri-
ors about auditory stimuli in human observers using Pavlovian conditioning.

Even in healthy individuals, the repeated co-occurrence of visual and auditory stimuli can induce audi-
tory hallucinations (7). We examined this effect with functional imaging. Some argue that in patients
with psychosis, weak priors lead to aberrant prediction errors, resulting in auditory verbal hallucina-
tions (AVH) (8). Others have observed strong priors in patients, but the effects were not specific to hal-
lucinations (9, 10). Such inconsistencies may reflect the hierarchical organization of perception: Per-
turbations may affect some levels of the hierarchy and not others (9). We used computational model-
ing to infer the strength of participants’ hierarchical perceptual beliefs from their behavioral responses
during conditioning (11). Our model captured how priors are combined with sensory evidence, allow-
ing us to test the strong-prior hypothesis directly.

Participants worked to detect a 1-kHz tone occurring concurrently with presentation of a checkerboard
visual stimulus. First, we determined individual thresholds for detection and psychometric curves (12).
Then, at the start of conditioning, the tone was presented frequently at threshold (Fig. 1A, left), engen-
dering a belief in audio-visual association. This belief was then tested (Fig. 1A, right) with increasingly
frequent subthreshold and target-absent trials (Fig. 1B). Conditioned hallucinations occurred when
subjects reported tones that were not presented, conditional upon the visual stimulus.
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We recruited four groups of subjects (Fig. 1C): people with a diagnosed psychotic illness who heard
voices (P+H+, n = 15); those with a similar illness who did not hear voices (P+H–, n = 14); an active con-
trol group who heard daily voices, but had no diagnosed illness (P–H+, n = 15) (13)—they attributed
their experiences metaphyscially (supplementary materials) (14); and last, controls without diagnosis
or voices (P–H–, n = 15).

Groups were matched demographically (tables S1 to S4). Rates of detection of tones at threshold were
similar across groups. All groups demonstrated conditioned hallucinations. However, those with daily
hallucinations endorsed more conditioned hallucinations than those without, regardless of diagnosis
(F  = 19.59, P = 5.82 × 10 ) (Fig. 1D). This effect remained after accounting for differences in detec-
tion thresholds (Fig. 1E, fig. S1, and table S5). Group differences in propensity to report tones were ob-
served only in the “no-tone” and 25% “likelihood of detection” conditions (intensity-by-hallucination
status F  = 13.59, P = 5.73 × 10 ) (Fig. 1F).

Participants also rated their decision confidence by holding down the response button (Fig. 1G). Partic-
ipant confidence varied with stimulus intensity (“yes”: R = 0.39, P = 7.46 × 10 ; “no”: R = 0.22, P =
9.02 × 10 ). However, hallucinators were more confident in their conditioned hallucinations than non-
hallucinators (F  = 6.50, P = 0.045). Both conditioned hallucinations and confidence correlated with

hallucination severity outside of the laboratory (Fig. 1, H and I, and fig. S3).

Fig. 1 Methods and behavioral results.
(A) Trials consisted of simultaneous presentation of a 1000-Hz tone in white noise and a visual checkerboard. (B) We estimat-
ed individual psychometric curves for tone detection (left) and then systematically varied stimulus intensity over 12 blocks of
30 conditioning trials. Threshold tones were more likely early, and absent tones were more likely later (right). (C) Groups varied
along two dimensions: the presence (+) or absence (–) of daily AVH (blue) and the presence (+) or absence (–) of a diagnos-
able psychotic-spectrum illness (red). (D) Detection thresholds. Error bars represent ±1 SD, and boxes represent ± 1 SEM. (E)
Probability of conditioned hallucinations varied according to hallucination status. Error bars represent ±1 SD, and boxes repre-
sent ±1 SEM. (Inset) Error bars represent ±1 SEM. ***P < 0.001. (F) Differences between hallucinating and nonhallucinating
groups were found only in the target-absent and 25% likelihood of detection conditions. Error bars represent ±1 SEM. (G) Hallu-
cinators were more confident than nonhallucinators when reporting a tone that did not exist. *P < 0.05. (H and I) Both the prob-
ability of reporting conditioned hallucinations (H) and the confidence with which they were reported (I) correlated with a mea-
sure of hallucination severity.
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hallucination severity outside of the laboratory (Fig. 1, H and I, and fig. S3).

In order to establish whether conditioned hallucinations involved true percepts, we first identified
tone-responsive regions from thresholding runs [peaks at (–60, –20, 2) and (62, –28, 10)] (Fig. 2A). As
observed with elementary hallucinations (15), activity in tone-responsive regions was greater during
conditioned hallucinations compared with correct rejections (t  = 4.93, P = 7.59 × 10 ) (Fig. 2B). Elec-
trical stimulation of this region in human patients produces AVH (16). Taken together, these findings
are consistent conditioned hallucinations involving actual perception.

Whole-brain analysis revealed that conditioned hallucinations also engaged anterior insula cortex
(AIC), inferior frontal gyrus, head of caudate, anterior cingulate cortex (ACC), auditory cortex, and pos-
terior superior temporal sulcus (STS) (Fig. 2C and table S6). A meta-analysis of symptom-capture–

based studies examining neural activity of AVH highlighted similar regions (Fig. 2D) (17). AIC and ACC

56
−6

Fig. 2 Imaging results.
(A) Bilateral supplemental auditory cortex covaried with tone intensity during thresholding (family-wise error rate–corrected, P
< 0.05). (B) Parameter estimates from this region showed increased activation during conditioned hallucinations. ***P < 0.001.
(C) Whole-brain analysis during conditioned hallucinations (false discovery rate–corrected, P < 0.05). (D) Clusters derived from
a meta-analysis (17) of AVH experiences during functional imaging. (E and F) Hallucinators were much less likely to engage
ACC during correct rejections. Error bars represent ±1 SEM.
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based studies examining neural activity of AVH highlighted similar regions (Fig. 2D) (17). AIC and ACC
responses frequently correlate with stimulus salience (18). However, their activation before near-
threshold stimulus presentation predicts detection (19). Caudate is engaged during audiovisual asso-
ciative learning (20). Likewise, AIC and ACC are engaged during multisensory integration (21).

There were no significant between-group differences in brain responses during conditioned hallucina-
tions. However, hallucinators deactivated ACC more [peak at (–16, 54, 14); cluster-extent thresholded,
starting value 0.005, critical cluster extent (k ) = 99] during correct rejections compared with nonhallu-
cinators (Fig. 2, E and F).

To further dissect conditioned hallucinations, we modeled their underlying computational mecha-
nisms (Fig. 3A) using the hierarchical Gaussian filter (HGF) (11). We defined a perceptual model con-
sisting of low-level perceptual beliefs (X ), visual-auditory associations (X ), and the volatility of those
associations (X ), as well as evolution rates encoding the relationships between levels (ω, θ). Critically,
our perceptual model allowed for variability in weighting between sensory evidence and perceptual be-
liefs (ν). For ν = 1, prior and observation have equal weight; for ν > 1, the prior has more weight than
that of the observation (strong priors); and for ν < 1, the observation has more weight than that of the
prior (weak priors). The resultant posterior probability of a tone is then fed to a separate response
model.
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Model parameters were fit to behavioral data, and the model was optimized by using log model evi-
dence and simulations of observed behavior (figs. S3 and S4). Mean trajectories of perceptual beliefs
were compared across groups (Fig. 3, B to D). Participants with hallucinations exhibited stronger be-
liefs at levels 1 (X : F  = 4.8, P = 3.89 × 10 ) (Fig. 3D) and 2 (X : F  = 3.89, P = 1.84 × 10 ) (Fig.
3C). X  beliefs evolved less in those with psychosis, who failed to recognize the increasing volatility in
contingencies (F  = 2.11, P = 0.018) (Fig. 3A).

Consistent with strong-prior theory, ν was significantly larger in those with hallucinations when com-

pared with their nonhallucinating counterparts (Fig. 3E), regardless of diagnosis (F  = 13.96, P = 4.45

Fig. 3 HGF analysis.
(A) Computational model, mapping from experimental stimuli to observed responses through perceptual and response models.
The first level (X ) represents whether the subject believes a tone was present or not on trial t. The second level (X ) is their be-
lief that visual cues are associated with tones. The third level (X ) is their belief about the volatility of the second level. The
HGF allows for individual variability in weighting between sensory evidence and perceptual beliefs (parameter ν). (B) At X ,
there was a significant block-by-psychosis interaction. *P < 0.05. (C and D) Significant block-by-hallucination status interac-
tions were seen at layers (D) X  and (C) X . ***P < 0.001. (E) ν was significantly higher in those with hallucinations when com-
pared with their nonhallucinating counterparts. ***P < 0.001. (F) No main effects of group or interaction effects were seen for
the decision noise parameter within the response model. Error bars and line shadings represent ±1 SEM. Purple, P+H+; blue, P–
H+; red, P+H–; white, P–H–.
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pared with their nonhallucinating counterparts (Fig. 3E), regardless of diagnosis (F  = 13.96, P = 4.45
× 10 ). Response model parameters did not differ across the groups (Fig. 3F).

We regressed model parameters onto task-induced brain responses (Fig. 4A). The X  trajectory covar-
ied with several conditioned hallucination-responsive regions, including STS (table S7). X  trajectories,
by contrast, covaried with hippocampus/parahippocampal gyrus and medial cerebellum (table S8). Pa-
rameter estimates from the X -sensitive STS [(−46 –36, 0), T  = 2.09, P = 0.042] (Fig. 4B) and AIC [(36,
8, –8), T  = 2.26, P = 0.027] (Fig. 4C) were significantly greater in those with hallucinations versus
those without. This is consistent with STS conferring auditory expectations that are responsive to in-
coming visual input (22). Parameter estimates from the X -responsive cerebellar vermis [(–2, –52, –
16)] (Fig. 4D) were lower in participants with psychosis as compared with those without (T  = 2.05, P =
0.045). In the model, subjects with psychosis were significantly less sensitive to the changes in contin-
gency as the task progressed. Psychotic symptoms are often associated with pathological rigidity. Be-
lief-updating correlated with responses in the hippocampus and cerebellum. Hippocampal activity cor-
relates with uncertainty in perceptual predictions (23). The cerebellum has likewise been associated
with production and updating of predictive models (24).
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Our X , X , and ν findings are consistent with a strong-prior theory of hallucinations. The X  findings
in psychotic patients may reflect a strong prior that contingencies are fixed. On the other hand, they
could reflect a weak prior on volatility. These beliefs were not associated with hallucinations but rather
psychosis more broadly. Under chronic uncertainty, secondary to consistent belief violation, it may be
adaptive to resist updating beliefs (25).

Consistent with previous work applying signal detection theory (SDT) to AVH (26), we found liberal

criteria and low perceptual sensitivity in our H+ groups. A liberal criterion may reflect poor reality

Fig. 4 HGF imaging results.
(A) HGF trajectories for X  (blue) and X  (red) regressed onto blood oxygen level–dependent time courses for the conditioned
hallucinations task. Regions that identified significantly active during conditioned hallucinations (from Fig. 3C) are highlighted
in yellow for reference. All images are cluster-extent thresholded at starting value 0.05; critical k  for X  = 545 and X  = 406. (B
and C) Parameter estimates of X  fit extracted from 5-mm sphere centered on (B) STS and (C) anterior insula activation differ
based on hallucination status. (D) Parameter estimates of X  fit extracted from 1-mm sphere centered on cerebellar vermis ac-
tivation differ based on psychosis status. Error bars represent 1 SEM.
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criteria and low perceptual sensitivity in our H+ groups. A liberal criterion may reflect poor reality
monitoring (26). However, meta-d' (a metric of participants’ meta-cognitive sensitivity) did not differ
significantly between groups (fig. S6). SDT is a descriptive tool that does not distinguish aberrant per-
ceptions from decisions. Our modeling work, however, localized group differences to the perceptual
model alone. The prior weighting parameter (ν) distinguished H+ from H– groups and also predicted
confidence in conditioned hallucinations (fig. S7). Our observations support an explanation of halluci-
nations based on strong perceptual priors. They suggest precision treatments for hallucinations, such
as targeting cholinergically mediated priors (27), and interventions to mollify psychosis more broadly,
such as cerebellar transcranial magnetic stimulation (28).
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Powers et al's (1) important study demonstrates the role of top-down cognitive processes (i.e., implicit predic-
tions) in shaping the incoming stream of sensory information. Their four-group design and use of experimen-
tally-induced hallucinations convincingly shows that these aberrant predictive processes may play a role in t…
onset of auditory hallucinations. An important next step would be to expand testing the predictive processing
model beyond hallucinations to a wider array of psychotic symptomatology and to core features of schizophre-
nia spectrum disorders. A strong candidate for the latter is disturbance of the "minimal" self, i.e., the founda-
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